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SUMMARY

Ordered distance sampling is a point-to-object sampling method that can be labor-efficient for demanding field
situations. An extensive simulation study was conducted to find the optimum number, g, of population members to
be encountered from each random starting point in ordered distance sampling. Monte Carlo simulations covered
64 combinations of four spatial patterns, four densities and four sample sizes. Values of g from 1 to 10 were
considered for each case. Relative root mean squared error (RRMSE) and relative bias were calculated for each
level of g, with RRMSE used as the primary assessment criterion for finding the optimum ievel of g. A non-
parametric confidence interval was derived for the density estimate, and this was included in the simulations to
gauge its performance.

Superior estimation properties were found for g > 3, but diminishing returns, relative to the potential for
increased effort in the field, were found for g > 5. The simulations showed noticeable diminishing returns for more
than 20 sampled points. The non-parametric confidence interval performed well for populations with random,
aggregate or double-clumped spatial patterns, but rarely came close lo target coverage for populations that were
regularly distributed. The non-parametric confidence interval presented here is recommended for general use.
Published in 2004 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

In many areas of ecology it is necessary Lo estimate the density of stationary objects in the field such as
plant communities, points of crop damage, bird nests or animal burrows. An ideal density sampling
method would produce an unbiased estimate, be robust to different population spatial patterns and
densities, and be easily applied in various field situations. Two general sampling techniques that
produce density estimates are the quadrat method and the various types of distance, or plotless,
methods. The well-known quadrat method involves randomly locating plots, or quadrats, of a given
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size and thoroughly searching for every population member in each quadrat. This technigque produces
unbiased estimates and is robust over population spatial patterns, given an appropriate quadrat size and
that all individuals within each quadrat are counted; each object within each quadrat must be detected
with probability one.

Examples of distance methods include the variable area transect, angle-order and the very popular
line transect method (Burnham er al., 1980; Buckland et «l., 1993; Krebs, 1998). Although line
transect sampling has proven to be a method that provides reliable estimates of density under fairly
mild assumptions {Buckland ez al., 1993), there are a few field situations that present difficulties for the
researcher such as when the objects are very dense or the landscape is very dense and it is difficult to
follow an assigned path and assume that al! objects on the line transect are detected with probability
one. Quadrat sampling can also become arduous when it is difficult to make an accurate count of all
members within a quadrat, such as sampling heavily damaged crops.

Cottam (1947) introduced distance sampling as a method for more easily obtaining density esti-
mates under these circumstances. Recently Engeman ef al. (1994) made comparisons of the performa-
nces of 25 distance methods on different spatial patterns, densities and sample sizes. Recommendations
were made as to which PDEs provided the best estimation properties while remaining feasible to
apply in difficult field situations. This work follows up on that paper by optimizing one of the better
performing, but simplest to apply, of the methods from that study —the ordered distance (OD) method
originally derived by Morisita (1957) and further developed by Pollard (1971).

Buckland et al. (1993) recommends against using point-to-object methods, ‘except in special
cases, such as estimating the density of forest stands.” The current article investigates the quality of OD
density estimates not only because ordered distance sampling is used in forestry, but also because it
holds potential for very broad application. For example, it is receiving attention by some agricultural
researchers who need to quickly estimate the relative density of points of crop damage in situations
where it would be too labor-intensive or otherwise unrealistic to use quadrat or line-transect methods.
While this investigation is motivated by situations where quadrat or line transect sampling may prove
too tenuous or labor-inefficient for the desired objective, the results are applicable in general.

2. ORDERED DISTANCE

Ordered distance sampling is performed by first randomly locating a sample size of # points in the area
of interest. At each of these n locations the researcher searches for the gth nearest population
individual from the random starting point and then records the exact distance from the point to the gth
individual. This could be applied by searching an ever-widening radius out from the random starting
point, or by simply visually identifying what appears to be the gth closest individual, and then
verifying this by distance measurement. If we let g be the number of nearest population individuals
searched for from each of the n random starting points, and R,,; be the distance to the gth individual
from the ith random starting point, then the formula for the OD estimator given by Pollard (1971) is

D=(ng - 1)/{””2(1?(3)5)2}

This estimator was derived for sampling from random spatial patterns and is unbiased for estimates
from such populations. The variance estimate for this estimator is

var(D) = (D)*/(ng — 2)
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Two major assumptions need to be considered when using this estimator: (i) the population under
investigation follows a random spatial distribution and (ii) the g nearest population members to each
randomn point must be detected with probability one. This study seeks to understand how the estimator
performs under spatial patterns other than the random, but it does not address detectability, assumption
(i1). In previous simulation studies, Engeman et al. (1994) considered using g =1, 2 or 3. Presented
here is an investigation into the estimation properties when sampling populations that represent a
diversity of spatial patterns and at a variety of densities. In each circumstance, estimation based on
locating g = 1, 2, ..., 10 population members from each random starting point is considered. Then,
attempts are made to determine optimal values of g and n, or values that represent points of dimini-
shing return for the field researcher.

3. SIMULATION STUDY DESIGN

A simulation program was written in Fortran 77 (Version 5.0, MS-DOS operating system), each run of
which was specified by a combination of population spatial pattern, population density and sample
size (number of random OD starting points). Under examination were 64 combinations encompassing
four spatial patterns, four densities and four sample sizes. At each random sampling point, the
distances to the 10 nearest individuals were measured. Thus, estimates could be calculated using g =1,
2,3,4,5,6,7,8, 9 and 10. This results in a simulation study on four features that potentially could
affect estimation by ordered distance sampling: spatial pattern, density, sample size, and number of
population members searched for at each random sampling point.

The uniform random number generator used for placing population individuals and locating
sampling points was the UNIF routine (Bratley et af., 1983). Where required, the VNORM routine
(Bratley et al., 1983) was used to convert the uniform random numbers to normal random numbers.
UNIF has been extensively tested for uniformity, independence and non-periodicity of the numbers
generated and VNORM tested for accuracy (Brody and Morais, 1987).

The density used in a particular run of the program was specified by inputting the size of a
rectangular area (the length of each dimension) and the number of individuals to reside in that area.
Target population densities of 2, 5, 10 and 20 individuals per unit area were examined. The area used
for each density was large enough to ensure that the target population was several orders of magnitude
larger than the number of sampling points.

Four spatial patterns were considered for the populations simulated in this study: random, regular,
aggregate and double-clumped. The random pattern {also called Poisson, in recognition that the points
are distributed as a two-dimensional Poisson process) was simulated by generating the appropriate
number of random co-ordinates from a uniform distribution in the designated area. The regular spatial
pattern was generated by dividing the area into a grid of rectangles, the same number as individuals in
the population. The population members were then situated by randomly locating one individual in
each rectangle. For the aggregate pattern, the centers of user-specified number of clumps were
randomly located in the designated area. In addition to the clump center point, a user-specified number
of ‘offspring’ for the clumps were located within the user-specified radius of the center (parent) point.
These offspring were located within the clump about the parent point using co-ordinates randomly
generated from the standard bivariate normal distribution. This tended to concentrate the members of
the clump near the center point. Aggregate spatial patterns approximate many naturally occurring
biological population patterns. For the simulations, clumps were comprised of five individuals (the
center point or ‘parent’ and four ‘offspring’) that were severely clumped, with the offspring located
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within a clump radius of 15 distance units. The pattern defined as double-clumped is a second-order
aggregation that was generated in a similar fashion to the aggregate pattern. The difference is that,
for the double-clumped pattern, the individuals in the clumps of the aggregate pattern are used for
center points (parents) for sub-clumps of two individuals. The two individuals of the sub-clumps
include the parent plus one other point (offspring) randomly generated from the standard bivariate
normal distribution. The radius for the sub-clump is restricted to one-half that for the clump (7.5
units). This spatial pattern approximates some of the field patterns that we have observed for rodent
burrows and animal damage locations, Tt also provides one of the severest tests of the estimation
method.

Randomly located starting points for the OD samples were required to initiate the sampling
procedures. The sample sizes considered in this study refer to the number of such random starting points
placed in the population. Sample sizes of random starting points examined were 5, 10, 20 and 40.

There were two runs of the simulation program for each spatial pattern-by-density-by-sample-size
combination. At each replication of each run of the program, a new population was generated and a
new set of random sampling points applied. Each simulation run comprised 5000 such replications.
The observed statistics accumulated over the 5000 replications at each g included the mean density
estimate, vanance, relative bias, mean squared error (MSE) and relative root mean squared error
{(RRMSE). RRMSE was calculated as

RRMSE = { [Z(i) - D)Z/Dﬂ /1}1/2

where D) was the estimated density, D was the true density, and f=>5000 was the number of
replications in the simulation run. RRMSE was used as the primary criterion for comparing the
performance of the estimates (see, for example, Patil er al., 1979; Engeman and Bromaghin, 1990;
Engeman et al., 1994; Engeman and Sugihara, 1998), because it encompasses variance and bias, and it
is unitless. Also calculated was the relative bias (RBTAS)— the mean observed bias divided by the true
parameter value. The statistics presented from these simulations are ‘relative’ statistics (divided by the
true density) to standardize the scale across the density parameter being estimated.

The tracde-off between r and g was examined by developing a predictive model of RRMSE for the
densily estimate. Only variables under the investigator’s control (n and g) were used to develop
predictive equations. Density, therefore, was not included. Also, it was presumed that: (i) different
relationships between RRMSE and » and g might come into play for different spatial patterns of
population members, and (ii) a field investigator might have information on the population pattern,
based on similar populations elsewhere or on other a priori knowledge. For each spatial pattern, the
equations with the lowest value of Akaike’s Information Criterion (AIC) (Akaike, 1973; Burnham and
Anderson, 1998) were chosen, looking at all reasonable subsets of #, g, n* and gz, and the product ng.
No prior knowledge of spatial patterns was also considered, and thus all RRMSE results were analyzed
together.

Confidence interval coverage based on two calculation methods for producing 1 -« confidence
intervals were also examined for each spatial pattern-by-density-by-sample-size combination. The
first formula used a normal approximation:

D — Ny \/Var(D) £ D <D + Ni_,ny/ Var(D)
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The second confidence interval formula was a non-parametric method based on applying a confidence
interval to the median (e.g. Hollander and Wolfe, 1973) from a sample of nR,,,s. The calculation steps
for a | —a confidence interval on density from ordered distance sampling are given in the Appendix.

For each of the calculation methods, 90 and 95% confidence intervals were considered. Confidence
interval coverage for a given target coverage, n, and g, was calculated as the percentage of the 5000
iterations for which confidence intervals contained the true population density.

4. RESULTS AND DISCUSSION

The results from the 128 population simulations {two runs each of the 64 combinations) are
summarized as the mean RRMSE in each spatial pattern at each sample size in Figure 1 and the
mean RBIAS in Figure 2. Besides the extensive testing involved in developing a simulation program,
various aspects of the results confirm that the program was functioning properly. Each of these 64
combinations was run twice, with different input seeds for the random number generator. There was
very little variability between simulation runs, with some of the resulting statistics often being
identical (to four decimal places) between the two runs. The mean relative bias (RBIAS) for the
random spatial pattern is zero for all densities, sample sizes and number of nearest individuals, g,
which also confirms that the simulations were running properly (Pollard, 1971).

For most of the simulation combinations, definite improvement in estimation was made with g > 3,
although the relative magnitudes of the improvements usually diminished after g = 5 (Figures 1 and 2).
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Figure 2. Mean relative bias (RBIAS) for each spatial pattern using g =1 to 10, across ali densities and sample sizes

Across all spatial patterns, densities and sample sizes, the RRMSE was reduced by about 60% by
measuring the distance to the 5th nearest individual, compared to using g=1 (Table 1). A further
reduction of only 12% is obtained by measuring the distance to the 10th nearest individual.

As would be expected, estimation improved with increasing sample size. RRMSEs did not
substantially change with density. Figure 1 shows that the RRMSE was much lower for the random
and regular patterns than for the populations where individuals were aggregated.

RRMSE predictive equations are shown in Table 2. For the random, regular and aggregated spatial
patterns the best equations were produced by full second order models with an interaction term (n, g,
n*, g* and ng). Second order polynomials without interaction terms were found to be the best fitting
models for the double-clump pattern and the ‘overall’ model.

Mean RBIAS was zero for the random spatial pattern, positive for the regular pattern and negative
for the aggregate and double-clumped patterns. The results for the aggregate and double-clump spatial
patterns could possibly be explained by the size of the clumps, or clusters, in the populations {cluster
size equaled five for the aggregate and nine for the double-clumped pattern).

Estimates of density based on sample sizes of 5 and 10 were not very reliable (large RRMSE)
compared to estimates based on larger samples sizes of 20 and 40 (Figures 1 and 2), and a sample size

Table 1. Percentage reduction of RRMSE in comparison to using g =1,
across all spatial patterns, densities and sample sizes

g RRMSE Reduction (%)
1 0.57 it
2 0.40 30
3 0.32 44
4 0.27 53
5 0.23 60
6 0.21 63
7 0.19 67
8 0.17 70
9 0.16 72

10 0.16 72
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Table 2. Predictive equations for RRMSE based on sample sizes and levels of g

Parameter cstimates

Pattern Intercept Sample size g (Sample size)® g (Sample
size) x g
Random 0.57687 —0.01747 —{.07895 0.00021 0.00417 0.00064
Regular 0.69815 —0.00700 —{1.15640 0.00008 0.00996 0.00036
Aggregate 0.81405 —-0.01270 —{.11687 0.00023 0.00734 —0.00021
Double-clump (.75448 —0.01114 —(.11859 0.00018 0.00728 —
Overall 0.75571 —0.01117 —0.11904 0.00018 0.00731 —

of n=20 seemed to be the point of diminishing returns for increased effort in the field. Thus,
confidence interval coverage by two methods is examined only for sample sizes of 20, and results are
displayed in Figures 3 and 4. The normal confidence interval produced excellent coverage in the
random spatial patterns for all values of g from 2 to 0. This method provided inconsistent results
among target coverages for the regular spatial pattern. The results for n =20 and g > 2 were much
higher than target coverage (very conservative). The normal confidence interval method produced
extremely poor results for both aggregate and double-clump spatial patterns for all values of g.

The non-parametric confidence interval produced good coverage for the random spatial pattern. 1t
should be noted that coverage for n =40 was significantly lower than target coverage for values of
g <5 (better coverage for g > 4). The regular spatial pattern was a challenge for this method, as
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Figure 3. 90% confidence interval coverage for each spatial pattern using a sample size of 20 and g =1 to 10, across all
densities
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Figure 4. 95% confidence interval coverage for each spatial pattern using a sample size of 20 and g=1 to 10, across al}
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coverage results were always short of target. In contrast, the non-parametric confidence interval method
performed much better than the normal method for both the aggregate and double-clump spatial
patterns, although its coverage was much higher than target for both patterns when g was >2 or 3.

5. CONCLUSIONS

Although using g < 3, as originally proposed by Pollard (1971), does produce good density estimates
for the random spatial pattern, in most situations the field researcher would benefit substantially from
locating the 5th nearest population individual from each random starting point. This becomes more
crucial as the population spatial pattern deviates more from the random pattern. It is not clear how
reasonable using g = 5 is in all field situations. This is where the predictive equations for the RRMSE
in Table 2 may prove valuable. The researcher could weigh the costs and benefits of using different
combinations of g and », knowing the specific field situation, and possibly even the spatial pattern of
the population under investigation. When considering a sample size to use for OD sampling, it should
be noted that 7 = 20 seems to be the point of diminishing returns for lowering the RRMSE and RBIAS
of the estimator. We suggest first considering a level of n ~ 20 for any field investigation using the OD
method, and then increasing g rather than # if time and costs permit. However, if field conditions are
‘casy’ enough to use g > 6 or n > 20, then quadrat or line transect sampling should be considered.
Confidence interval coverage is very close to target for the non-parametric confidence interval
when using g =5 and n =20, for the various spatial patterns and densities. If the investigator has
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information as to which spatial pattern the population tends to follow, then a choice can be made
between the normal confidence interval and the non-parametric confidence interval methods. If it is
known that the population follows a random or regular spatial pattern, then the normal confidence
interval would provide coverage closest to target. The regular spatial pattern is not a very common
occurrence in nature, but it may be encountered when investigating populations of territorial indivi-
duals over a homogenous landscape, such as colonial nesting waterbirds. If the population follows the
aggregate or double-clumped patterns, which are more common in field populations, such as for plant
communities, crop damage and animal burrows, then the non-parametric confidence interval should be
used. It might be possible for the investigator to first use the ordered distance method to sample from
the population, and then calculate Pielou’s index of non-randomness (Pielou, 1959) to indicate which
spatial pattern is being observed—regular, random or aggregate—and then choose a confidence
interval method.

It should be noted that non-parametric confidence intervals tend to be relatively large (wide) for a
given target coverage, and when sampling from lower density populations, the confidence interval can
encompass zero. This can be easily remedied, without losing accuracy, by replacing the lower
endpoint of the non-parametric confidence interval with the observed density. Other suggestions for
improved confidence interval methods to investigate include using a bootstrap variance and confidence
interval if sample sizes are adequate (say n > 209, or derivation of a new confidence interval that is a
combination of the normal and the non-parametric confidence interval methods (Engeman and
Sugihara, 1998).

We sought to optimize the application of OD sampling through extensive simulations. In natural
situations the pattern and density of populations can vary greatly and a simulation using artificial
populations can only approximate natural processes. Therefore, the true test of the results presented
here would be verification using a wide variety of fully enumerated field data sets. At present, it
appears that OD sampling using g =4 or g =5 offers the field investigator a method that is relatively
easy to apply, confusion free, and produces quality estimates for populations exhibiting the random,
regular or aggregated spatial patterns. Although ordered distance may be the favored method when
labor-efficiency is preferred over unbiasedness or in extreme field situations such as estimating the
intensity of crop damage, it is important to remember the limitations of the estimator and its
assumptions. Given the information in this paper on the size and direction of bias and estimator
efficiency, the field researcher can make informed decisions regarding the use of the ordered distance
method and the resulting density estimate for the investigated population.

APPENDIX

The calculation method for a non-parametric (1 — a) x 100% confidence interval on density from
ordered distance sampling, when the distance to the gth nearest population member from each random
sampling point is measured, is as follows (at any given random sampling point let R, = the distance
from the ith sampling point to the gth population member; let » be the number of such random
sampling points from which ordered distances were applied):

1. Order the n R, from smallest to largest such that R,m < RE?J << Rl(."J.
2. Calculate the value of C to the nearest integer, where

C = (n/2) ~zap (n/4)'"
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3. Letd) = (REC))Z and 8, — (Rgnﬂ—cﬁ)l'

i

4. The lower (LL) and upper (UL) 1 — & confidence limits are, respectively:

LL = (ng — 1)/{nm:)
UL = (ng — 1)/ (n7th)
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